Code for quiz 6, more dplyr and our first interactive chart using echarts4r.
Load the R packages we will use.
drug_cos.csv, health_cos.csv in to R and assign to the variables drug_cos and health_cos, respectivelydrug_cos <- read_csv("https://estanny.com/static/week6/drug_cos.csv")
health_cos <- read_csv("https://estanny.com/static/week6/health_cos.csv")
drug_cos %>% glimpse()
Rows: 104
Columns: 9
$ ticker <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS"~
$ name <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zoet~
$ location <chr> "New Jersey; U.S.A", "New Jersey; U.S.A", "New ~
$ ebitdamargin <dbl> 0.149, 0.217, 0.222, 0.238, 0.182, 0.335, 0.366~
$ grossmargin <dbl> 0.610, 0.640, 0.634, 0.641, 0.635, 0.659, 0.666~
$ netmargin <dbl> 0.058, 0.101, 0.111, 0.122, 0.071, 0.168, 0.163~
$ ros <dbl> 0.101, 0.171, 0.176, 0.195, 0.140, 0.286, 0.321~
$ roe <dbl> 0.069, 0.113, 0.612, 0.465, 0.285, 0.587, 0.488~
$ year <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018,~
health_cos %>% glimpse()
Rows: 464
Columns: 11
$ ticker <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS",~
$ name <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zoeti~
$ revenue <dbl> 4233000000, 4336000000, 4561000000, 4785000000, ~
$ gp <dbl> 2581000000, 2773000000, 2892000000, 3068000000, ~
$ rnd <dbl> 427000000, 409000000, 399000000, 396000000, 3640~
$ netincome <dbl> 245000000, 436000000, 504000000, 583000000, 3390~
$ assets <dbl> 5711000000, 6262000000, 6558000000, 6588000000, ~
$ liabilities <dbl> 1975000000, 2221000000, 5596000000, 5251000000, ~
$ marketcap <dbl> NA, NA, 16345223371, 21572007994, 23860348635, 2~
$ year <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, ~
$ industry <chr> "Drug Manufacturers - Specialty & Generic", "Dru~
names_drug <- drug_cos %>% names()
names_health <- health_cos %>% names()
intersect(names_drug, names_health)
[1] "ticker" "name" "year"
For drug_cos select (in this order): ticker, year. grossmargin
Extract observations for 2018
assign output to drug_subset
For health_cos select in order: ticker, year, revenue, gp, industry
extract observations for 2018
Assign output to health_subset
drug_subset <- drug_cos %>%
select(ticker, year, grossmargin) %>%
filter(year == 2018)
health_subset <- health_cos %>%
select(ticker, year, revenue, gp, industry) %>%
filter(year == 2018)
drug_subset join with columns in health_subsetdrug_subset %>% left_join(health_subset)
# A tibble: 13 x 6
ticker year grossmargin revenue gp industry
<chr> <dbl> <dbl> <dbl> <dbl> <chr>
1 ZTS 2018 0.672 5.82e 9 3.91e 9 Drug Manufacturers - ~
2 PRGO 2018 0.387 4.73e 9 1.83e 9 Drug Manufacturers - ~
3 PFE 2018 0.79 5.36e10 4.24e10 Drug Manufacturers - ~
4 MYL 2018 0.35 1.14e10 4.00e 9 Drug Manufacturers - ~
5 MRK 2018 0.681 4.23e10 2.88e10 Drug Manufacturers - ~
6 LLY 2018 0.738 2.46e10 1.81e10 Drug Manufacturers - ~
7 JNJ 2018 0.668 8.16e10 5.45e10 Drug Manufacturers - ~
8 GILD 2018 0.781 2.21e10 1.73e10 Drug Manufacturers - ~
9 BMY 2018 0.71 2.26e10 1.60e10 Drug Manufacturers - ~
10 BIIB 2018 0.865 1.35e10 1.16e10 Drug Manufacturers - ~
11 AMGN 2018 0.827 2.37e10 1.96e10 Drug Manufacturers - ~
12 AGN 2018 0.861 1.58e10 1.36e10 Drug Manufacturers - ~
13 ABBV 2018 0.764 3.28e10 2.50e10 Drug Manufacturers - ~
. Start with the drug_cos data
. Extract observations for the ticker MRK from drug_cos . Assign output to the variables drug_cos_subset
drug_cos_subset <- drug_cos %>%
filter(ticker == "MRK")
. Display drug_cos_subset
drug_cos_subset
# A tibble: 8 x 9
ticker name location ebitdamargin grossmargin netmargin ros roe
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 MRK Merc~ New Jer~ 0.305 0.649 0.131 0.15 0.114
2 MRK Merc~ New Jer~ 0.33 0.652 0.13 0.182 0.113
3 MRK Merc~ New Jer~ 0.282 0.615 0.1 0.123 0.089
4 MRK Merc~ New Jer~ 0.567 0.603 0.282 0.409 0.248
5 MRK Merc~ New Jer~ 0.298 0.622 0.112 0.136 0.096
6 MRK Merc~ New Jer~ 0.254 0.648 0.098 0.117 0.092
7 MRK Merc~ New Jer~ 0.278 0.678 0.06 0.162 0.063
8 MRK Merc~ New Jer~ 0.313 0.681 0.147 0.206 0.199
# ... with 1 more variable: year <dbl>
. Use left_join to combine rows and columns of drug_cos_subset with the columns of health_cos
. Assign The output to combo_df
combo_df <- drug_cos_subset %>%
left_join(health_cos)
. Display combo_df
combo_df
# A tibble: 8 x 17
ticker name location ebitdamargin grossmargin netmargin ros roe
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 MRK Merc~ New Jer~ 0.305 0.649 0.131 0.15 0.114
2 MRK Merc~ New Jer~ 0.33 0.652 0.13 0.182 0.113
3 MRK Merc~ New Jer~ 0.282 0.615 0.1 0.123 0.089
4 MRK Merc~ New Jer~ 0.567 0.603 0.282 0.409 0.248
5 MRK Merc~ New Jer~ 0.298 0.622 0.112 0.136 0.096
6 MRK Merc~ New Jer~ 0.254 0.648 0.098 0.117 0.092
7 MRK Merc~ New Jer~ 0.278 0.678 0.06 0.162 0.063
8 MRK Merc~ New Jer~ 0.313 0.681 0.147 0.206 0.199
# ... with 9 more variables: year <dbl>, revenue <dbl>, gp <dbl>,
# rnd <dbl>, netincome <dbl>, assets <dbl>, liabilities <dbl>,
# marketcap <dbl>, industry <chr>
ticker, name, location and industry are the same for all the observations. Assign the company name to co_name
co_name <- combo_df %>%
distinct(name) %>%
pull()
. Assign the company location to co_location
co_location <- combo_df %>%
distinct(location) %>%
pull()
. Assign the industry to co_industry group
co_industry <- combo_df %>%
distinct(industry) %>%
pull()
The company Merck & Co Inc is located in New Jersey; U.S.A and is a member of the Drug Manufacturers - General industry group.
. Start with combo_df
. Select variables (in this order): year, grossmargin, netmargin, revenue, gp, netincome
. Assign the output to combo_df_subset
combo_df_subset <- combo_df %>%
select(year, grossmargin, netmargin, revenue, gp, netincome)
. Display combo_df_subset
combo_df_subset
# A tibble: 8 x 6
year grossmargin netmargin revenue gp netincome
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2011 0.649 0.131 48047000000 31176000000 6272000000
2 2012 0.652 0.13 47267000000 30821000000 6168000000
3 2013 0.615 0.1 44033000000 27079000000 4404000000
4 2014 0.603 0.282 42237000000 25469000000 11920000000
5 2015 0.622 0.112 39498000000 24564000000 4442000000
6 2016 0.648 0.098 39807000000 25777000000 3920000000
7 2017 0.678 0.06 40122000000 27210000000 2394000000
8 2018 0.681 0.147 42294000000 28785000000 6220000000
. Create the variables grossmargin_check to compare with the variables grossmargin. They should be equal - grossmargin_check = gp / revenue
. Create the variable close_enough to check the absolute value of the difference between grossmargin_check and grossmargin is less than 0.00
combo_df_subset %>%
mutate(grossmargin_check = gp / revenue,
close_enough = abs(grossmargin_check - grossmargin) < 0.001)
# A tibble: 8 x 8
year grossmargin netmargin revenue gp netincome
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2011 0.649 0.131 48047000000 31176000000 6272000000
2 2012 0.652 0.13 47267000000 30821000000 6168000000
3 2013 0.615 0.1 44033000000 27079000000 4404000000
4 2014 0.603 0.282 42237000000 25469000000 11920000000
5 2015 0.622 0.112 39498000000 24564000000 4442000000
6 2016 0.648 0.098 39807000000 25777000000 3920000000
7 2017 0.678 0.06 40122000000 27210000000 2394000000
8 2018 0.681 0.147 42294000000 28785000000 6220000000
# ... with 2 more variables: grossmargin_check <dbl>,
# close_enough <lgl>
. Create the variable netmargin_check to compare with the variable netmargin. They should be equal.
. Create the variable close_enough to check that the absolute value of the differences between netmargin_check and netmargin is less than 0.001
combo_df_subset %>%
mutate(netmargin_check = netincome / revenue,
close_enough = abs(netmargin_check - netmargin) <0.001)
# A tibble: 8 x 8
year grossmargin netmargin revenue gp netincome
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2011 0.649 0.131 48047000000 31176000000 6272000000
2 2012 0.652 0.13 47267000000 30821000000 6168000000
3 2013 0.615 0.1 44033000000 27079000000 4404000000
4 2014 0.603 0.282 42237000000 25469000000 11920000000
5 2015 0.622 0.112 39498000000 24564000000 4442000000
6 2016 0.648 0.098 39807000000 25777000000 3920000000
7 2017 0.678 0.06 40122000000 27210000000 2394000000
8 2018 0.681 0.147 42294000000 28785000000 6220000000
# ... with 2 more variables: netmargin_check <dbl>,
# close_enough <lgl>
health_cos %>%
group_by(industry) %>%
summarize(mean_netmargin_percent = mean(netincome / revenue) * 100,
median_netmargin_percent = median(netincome / revenue) * 100,
min_netmargin_percent = min(netincome / revenue) * 100,
max_netmargin_percent = max(netincome / revenue) * 100)
# A tibble: 9 x 5
industry mean_netmargin_pe~ median_netmargin~ min_netmargin_p~
<chr> <dbl> <dbl> <dbl>
1 Biotechnology -4.66 7.62 -197.
2 Diagnostics &~ 13.1 12.3 0.399
3 Drug Manufact~ 19.4 19.5 -34.9
4 Drug Manufact~ 5.88 9.01 -76.0
5 Healthcare Pl~ 3.28 3.37 -0.305
6 Medical Care ~ 6.10 6.46 1.40
7 Medical Devic~ 12.4 14.3 -56.1
8 Medical Distr~ 1.70 1.03 -0.102
9 Medical Instr~ 12.3 14.0 -47.1
# ... with 1 more variable: max_netmargin_percent <dbl>
health_cos and assign to the variable health_cos_subsethealth_cos_subset <- health_cos %>%
filter(ticker == "BMY")
health_cos_subsethealth_cos_subset
# A tibble: 8 x 11
ticker name revenue gp rnd netincome assets liabilities
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 BMY Bristo~ 2.12e10 1.56e10 3.84e9 3.71e9 3.30e10 17103000000
2 BMY Bristo~ 1.76e10 1.30e10 3.90e9 1.96e9 3.59e10 22259000000
3 BMY Bristo~ 1.64e10 1.18e10 3.73e9 2.56e9 3.86e10 23356000000
4 BMY Bristo~ 1.59e10 1.19e10 4.53e9 2.00e9 3.37e10 18766000000
5 BMY Bristo~ 1.66e10 1.27e10 5.92e9 1.56e9 3.17e10 17324000000
6 BMY Bristo~ 1.94e10 1.45e10 5.01e9 4.46e9 3.37e10 17360000000
7 BMY Bristo~ 2.08e10 1.47e10 6.48e9 1.01e9 3.36e10 21704000000
8 BMY Bristo~ 2.26e10 1.60e10 6.34e9 4.92e9 3.50e10 20859000000
# ... with 3 more variables: marketcap <dbl>, year <dbl>,
# industry <chr>
In the console, type ?distinct. Go to the help pane to see waht disticnt does
Ine the console, type ?pull. Go to the help pane to see what it does.
Run the code below
health_cos_subset %>%
distinct(name) %>%
pull(name)
[1] "Bristol Myers Squibb Co"
co_nameco_name <- health_cos_subset %>%
distinct(name) %>%
pull(name)
In following chunk
co_industryco_industry <- health_cos_subset %>%
distinct(industry) %>%
pull()
The company Bristol Myers Squibb Co is a member of Drug Manufacturers - General
dfglimpse to glimpse the data for the plotsdf %>% glimpse()
Rows: 9
Columns: 2
$ industry <chr> "Biotechnology", "Diagnostics & Research", "Drug~
$ med_rnd_rev <dbl> 0.48317287, 0.05620271, 0.17451442, 0.06851879, ~
ggplot to initailize the chartdfindustry is mapped to the x-axis -reorder it based the value of med_rnd_revmed_rnd_rev is mapped on the y axisgeom_colscale_y_contnuous to label the y-axis with percentcord_flip() to flip the coordianteslabs to add title, subtitle and remove x and y axestheme_ipsum() from the hrbrthemes package to improve the themeggplot(data = df, mapping = aes(
x = reorder(industry, med_rnd_rev ),
y = med_rnd_rev
)) +
geom_col() +
scale_y_continuous(labels = scales::percent) +
coord_flip() +
labs(
title = "median R&D expenditures",
subtitle = "by industry as a percent of revenue from 2011 to 2018",
x = NULL, Y = NULL) +
theme_ipsum()

ggsave(filename = "preview.png", path = here::here("_posts", "2021-03-16-joining-data"))
Create an interactive bar chart using the package echarts4r -start with the data df -use arrange to reorder med_rnd_rev -use e_charts to initialize a chart -the variable industry is mapped to the x-axis -add a bar chart using e_bar with the values of med_rnd_rev -use e_flip_coords() to flip the coordinates -use e_title to add the title and the subtitle -use e_legend to remove the legends -use e_x_axis to change format of labels on x-axis to percent -use e_y_axis to remove labels on y-axis- -use e_theme to change the theme. Find more themes here
df %>%
arrange(med_rnd_rev) %>%
e_charts(
x = industry
) %>%
e_bar(
serie = med_rnd_rev,
name = "median"
) %>%
e_flip_coords() %>%
e_tooltip() %>%
e_title(
text = "median industry R&D expenditures",
subtext = "by industry as a percent of revenue from 2011 to 2018",
left = "center") %>%
e_legend(FALSE) %>%
e_x_axis(
formatter = e_axis_formatter("percent", digits = 0)
) %>%
e_y_axis(
show = FALSE
) %>%
e_theme("infographic")